ビフェノックス（モーダウン）の毒性試験の概要

薬剤の概要
ビフェノックス（商品名：モーダウン）は1970年代に、米国のモービルケミカル社により除草剤としての開発が始められ、1980年代の初めにフランスの化学品会社ローヌ・ブーラン社に引き継がれている。日本では1973年から水稲除草剤として試験され、1979年に農薬登録されている。現在では数種の混合剤も併用され、水稲に登録されているとともに、いわき市でも商用が拡大されている。

本剤の化学構造および物理化学的性質は以下に示すとおりである。
一般名：ビフェノックス bifenox
化学名：Methyl 5-（2,4-dichlorophenoxy）-2-nitrobenzoate

構造式：

分子量：342.12
性状：淡黄褐色結晶
融点：87〜88℃
蒸気圧：2.4×10⁻⁴mmHg（30℃）
溶解度：（g/l、25℃）アセトトン400、キシリレン300、クロロベンゼン350〜400、エタノール50、水0.35ppm

急性毒性試験
ラット、マウスおよびウサギに対する各種急性毒性試験結果は次の表に示すとおりである。

<table>
<thead>
<tr>
<th>投与経路</th>
<th>性別</th>
<th>LD₅₀ (mg/kg)</th>
<th>試験機関</th>
<th>報告書作成年</th>
</tr>
</thead>
<tbody>
<tr>
<td>ラット</td>
<td>経口</td>
<td>雄</td>
<td>＞5000</td>
<td>東邦大学医学部</td>
</tr>
<tr>
<td></td>
<td>雌</td>
<td>＞5000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>皮下</td>
<td>雄</td>
<td>＞5000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>雌</td>
<td>＞5000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>関内</td>
<td>雄</td>
<td>＞2500</td>
<td></td>
</tr>
<tr>
<td></td>
<td>雌</td>
<td>＞2500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>マウス</td>
<td>経口</td>
<td>雄</td>
<td>＞5000</td>
<td>東邦大学医学部</td>
</tr>
<tr>
<td></td>
<td>雌</td>
<td>＞5000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>皮下</td>
<td>雄</td>
<td>＞5000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>雌</td>
<td>＞5000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>関内</td>
<td>雄</td>
<td>＞2500</td>
<td></td>
</tr>
<tr>
<td></td>
<td>雌</td>
<td>＞2500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ウサギ</td>
<td>経皮</td>
<td>雄</td>
<td>＞2000</td>
<td>Bio/Dynamics Inc.</td>
</tr>
<tr>
<td></td>
<td>雌</td>
<td>＞2000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ラット</td>
<td>吸入</td>
<td>雄</td>
<td>＞290</td>
<td>Biosearch Inc.</td>
</tr>
</tbody>
</table>

- 30 -
刺激型試験
1. 眼一次刺激型試験（原体）
原体5.1gを右眼に適用し、左眼は対照としウサギに処理した。血圧は適切に2分後に生食食塩水中で洗浄し、観察はDraize法に従って4日間行った。その結果は危険性の一次刺激性が認められた。
（臨床医学研究所 1986）

2. 皮膚一次刺激型試験（原体）
原体0.5gをウサギの単毛皮部に処理し適切4時間後、洗浄と取った。結果は皮膚刺激性をまったく認めない。
（臨床医学研究所 1986）

皮膚感作性試験
1群18匹の先頭モレルポットにBuehler法を用い、原体のカセイン混合物を単毛皮部に7日おきに3回塗布し、1週間後に誘発反応の結果、一部の動物に軽い紅斑が認められたことから、皮膚感作性は中等度と判断した。
（臨床医学研究所 1986）

急性毒性試験
1. ラットにおける急性毒性試験
Wister系ラット1群20匹に10、100、1000、10000ppmで13週間観察投与した。結果、全群で異常な病理所見は認められなかったが、体重増加、血漿生化学的検査項目のうちプロテイン、GOT、尿素窒素値などで10000ppm群で正常値のとおり値が認められたので、最大無作用量を1000ppmと判断した。
（慶應大学医学部 1978）

慢性毒性試験
1. ラットにおける慢性、発癌性試験
Charles River CD系ラット1群50匹に、原体を500、1580、5000ppmの濃度で24ヶ月間飼育投与した。試験期間を通じて、中毒症状は認められず、また投与による死亡率への影響もなかった。体重増加、摂取量および食醣効率では、500ppmでやや抑制されたが生食効率減少が認められた。尿検査、眼科的検査項目では異常は認められていなかった。血液学的検査および血液生化学的検査項目のいずれか、群間比を比較すると、群間差が見られたが、軽度であり一定した傾向もなく、慢性毒性の意義はないと判断された。病理組織学的検査では異常はなく、非癌性、癌性とともにその発癌発生率はこの系統のラットを用いて観察した場合に通常認められ発見率と同等であった。以上の結果から、最大投与量5000ppmの体重増加への影響を考慮して最大無作用量を1580ppmとし、発癌性は全くないと判断した。
（Huntingdon 英国 1987）

2. マウスにおける発癌性試験
B６C３F１系マウス1群60匹に、原体50、200、1000ppmの濃度で24ヶ月間飼育投与した。一覧症状、死亡率の検体投与の影響はなかった。体重増加、摂取量、食醣効率についても、統計的に有意な変動が見られなかったが、毒性学的意義はないと判断した。病理組織学的検査では非癌性病変のうち、胃壁組織上皮肥大が腫の高率集団に見られた。癌発生の変化についても統計的有意性をもつものはなかった。以上の結果から、200ppm以上で腫の基細胞上皮細胞腫が見られることから、最大無作用量を50ppmであると判断した。発癌性は認められない。
（Litton Bionetics 米国 1982）

繁殖性および致死性試験
1. ラットにおける繁殖試験
CD系ラットの3代世において、原体20、60、200ppmで1週間で各世代ごとに32週間観察対照投与した。200ppm投与群の維持動物から胎児を産むことが確認され、胎児の体重が正常値に近い値で、胎児の実生率の減少が見られる。同投与群で胎児数の増加の有効性が認められたが、非投与群の胎児生殖力に対して何らの影響もなかった。ゆえに最大無作用量を60ppmと判断した。
（HBTL 米国 1977）

2. ラットにおける抗発性試験
アルプヒララット1群17匹に、原体50、100mg/kg/dayの投与量で、妊娠6日目から15日目まで10日間コーンオイルに懸濁させ経口投与し、妊娠20日目に胎児検査をした。胎児数及び胎児数の全ての検査項目についても異常は認められなかったことから、無作用量は100mg/kg/dayと判断し、抗発性はないと考えられる。
（HBTL 米国 1972）

3. ウサギにおける致死性試験
ニュージーランド系白色ウサギ1群15匹に、原体を12.5、25、50mg/kg/dayの投与量で、妊娠6日目から15日目までの14週間コーンオイルに懸濁させて経口投与した。胎児29日目で胎児検査をした結果、全群で毒性性はなく、胎仔に対する影響も見られなかったことから、無作用量は最高投与量の50mg/kg/dayとし、致死性はないと考えられる。
（Hazleton 米国 1979）

変異原性試験
1. DNA損傷誘発性
Bacillus subtilisを用い非活性法によりDNA損傷誘発性を検定した。検体濃度20～2900μg/diskとし、最高濃度2000においても誘発性はなかった。
（残留農薬研究所 1977）

Saccharomyces cerevisiaeを用い薬物代謝酵素系の存在下、非存在下で数秒間照射後の組換え誘発性を検定した結果、誘発性は陰性であった。
（Litton Bionetics 米国 1981）
培養ラット肝細胞を用いin vitro不定期DNA合成を測定し、DNA損傷誘発性を検定した結果、誘発性は陰性であった。

（Litton Bionetics 米国 1981）

2．遺伝子突然変異性

Salmonella及びEscherichiaを用い、再現発異性を検定した結果、代謝活性を含む条件で限界濃度の5000 µg/plateでも再現発異誘発性は陰性であった。

（残留農薬研究所 1977）

ICR系マウスを宿主としSalmonellaヒスチジン要求株によりin vitro再現発異誘発性を検定した結果、誘発性は陰性であった。

（残留農薬研究所 1977）

3．染色体異常誘発性

チャイニーズハムスターの線代培養した細胞を用いてin vitroで分裂中期像から染色体異常誘発性を検定した結果、代謝活性系の有無にかかわらず染色体異常の誘発性は認められなかった。

（American Biogenics 米国 1985）

一般薬理試験

ICR系マウスを用い、中枢神経、自発運動への影響を試験した。原体の800、2000、5000 mg/kgを経口投与しIrwin法で検討した。結果は特異的な変化はなかった。

呼吸、循環系に及ぼす影響は日本白色ウサギを用いて検討した。原体3、10、30 mg/kgを静脈注射した。

低い、中濃度群ではほとんど影響はなかったが、最高濃度では呼吸数の増加、血圧の低下、心拍数減少などのみられたが、一過性でやや回復した。

自律神経に対しては、モノロックの排出回腸で試験した。アセチルコリン及びアセチルコリンよりヒスチジンの収縮効果に対してこれをやや抑制する効果がみられた。以上のように高濃度投与ではやや抑制方向への作用がみられた。

（薬効開発研究所 1989）

要約

ピフェノックスの安全性を評価するために行なわれた各種の毒性試験について述べてきたが、以下のよう

に要約される。

急性毒性のLD₅₀は、経口5000 mg/kg以上、経皮2000 mg/kg以上、吸入200 mg/m³以上と極めて低毒性である。

ウサギの眼に対して軽い刺激性が認められているが、一過性であり、その他の刺激性がないことから実用上特に問題ないと考えられる。

軽い皮膚感作性は認められている。

一般薬理試験結果から、動物に鎮静作用がみられているが、自発行動や運動量への影響がないことから、特に問題になるものではない。

以上のように本剤は主として粒剤での使用となるので、安全性は高く、一般的な注意事項を遵守すれば、作業者、散布者には危険性はないものと判断される。

亜急性及び慢性毒性試験等から考察して特異的な標的器官はなく、投与量を上げることによる中毒症状と

して過敏性の減少、血液学的な血液生化学的検査

項目に正常値を越えるものが確認されている。

発癌性に関しては、長期投与試験で認められておらず、また一連の変異原性試験においても全て陰性であった。これらのことから本剤の使用に対する発癌性の危険性はほとんどないものと判断する。

次世代に及ぼす影響も特異的なものではなく、使用形態

性も認められていない。

本剤は作業（稲）の生産初期の土壌に散布されるので、実際の収穫物に残留しているというとはほとんどない。この様々な使用形態及び作物中の残留実態を考慮しても人間が被曝する程度は動物試験の投与レベルに比較すれば極めて低いところにあり、その危険性は

小さい。又、使用によって原体中にはダイオキシンが含まれてい

ない。

ピフェノックス（モーダウン粒剤）は平成元年8月
現在米稲及びいなさに農薬登録が取得されており、製
剤は7%粒剤であり、他の除草剤成分との混合剤も登
録されている。

（問い合わせ先：ローナー・ブーラン アグロ株式会社）