

IRAC Mode of Action Classification Scheme

Issued, March 2020

Version 9.4

Prepared by: IRAC International MoA Working Group

Approved by: IRAC Executive

© Copyright 2020 Insecticide Resistance Action Committee

Contents:

1.	Scope	3
2.	Purpose	3
3.	What is resistance?	3
4.	MoA, Target-site resistance and Cross-resistance	3
5.	Use of alternations or sequences of different MoAs	3
6.	Non-target site resistance mechanisms	4
7.	The MoA Classification Scheme	4
	7.1 Rules for inclusion of an insecticidal agent in the MoA list	5
	7.2 The Classification Table	5
	7.3 Criteria for descriptors of the quality of MoA information	15
	7.4 Notes regarding sub-groups	15
	7.5 General notes & MoA Classification Scheme Updates	16

Appendix 1

Product labels: Indication of MoA	of active ingredient and accompanying
IRM advice	

Appendix 2

IRM principles recommended and endorsed by IRAC

Appendix 3

MoA group descriptors	
-----------------------	--

Appendix 4

Procedure for allocation of new insecticidal materials to the MoA	
Classification	23

Appendix 5

Active Ingredients in alphabetical order with their MOA Classification26

Appendix 6

Active ingredients pendi	g registration	
--------------------------	----------------	--

1. Scope

The IRAC classification is intended to cover all materials, chemical, biological or other, that are used to control insects or acarines on crops, in structures or in the environment. Some insecticides and acaricides also control nematodes, but selective nematicides are not included in the classification. Behaviour-modifying agents and predatory insects/mites are not included. Products used only by direct application to animals or humans for control of parasites are likewise not included.

Note: Inclusion in the MoA list does not necessarily signify regulatory approval.

2. Purpose

The IRAC Mode of Action (MoA) classification provides growers, advisors, extension staff, consultants and crop protection professionals with a guide to the selection of acaricides or insecticides for use in an effective and sustainable acaricide or insecticide resistance management (IRM) strategy. In addition to presenting the MoA classification, this document outlines the background to, and purposes of, the classification list, and provides guidance on how it is used for IRM purposes. Many countries now require including the IRAC group on labels, and this is recommended even if not required. Labeling guidelines are given in Appendix 1 and require that the active ingredient be listed in Appendix 5. Procedures for requesting IRAC classification of a new/unlisted active ingredient are found in Appendix 4. This document is reviewed and re-issued as needed.

3. What is resistance?

Resistance to insecticides may be defined as 'a heritable change in the sensitivity of a pest population that is reflected in the repeated failure of a product to achieve the expected level of control when used according to the label recommendation for that pest species' (IRAC). This definition differs slightly from others in the literature, but IRAC believes it represents the most accurate practical definition of relevance to growers. Resistance arises through the over-use or misuse of an insecticide or acaricide against a pest species and results from the Darwinian selection of resistant forms of the pest and the consequent evolution of populations that are resistant to that insecticide or acaricide.

4. MoA, Target-site resistance and Cross-resistance

In many cases, not only does resistance render the selecting insecticidal or acaricidal agent ineffective, it also confers cross-resistance to other structurally related agents. This is because agents with structural similarity usually share a common target site within the pest, and thus share a common MoA. It is common for resistance to develop that is based on a genetic modification of this target site. When this happens, the interaction of the selecting insecticidal or acaricidal agent with its target site is impaired and the agent loses its pesticidal efficacy. Because all insecticidal and acaricidal agents with structural similarity share a common MoA, there is a high risk that existing or developing target-site resistance will confer cross-resistance to all agents in the same group. It is this concept of cross-resistance within a family of structurally related insecticides or acaricides that is the basis of the IRAC MoA classification.

5. Use of alternations or sequences of different MoAs

The objective of successful Insecticide Resistance Management (IRM) is to prevent or delay the evolution of resistance to insecticides, or to help regain susceptibility in insect pest populations in which resistance has already arisen. Effective IRM is thus an important element in maintaining the efficacy of valuable insecticides. It is important to recognize that it is usually easier to proactively prevent resistance from occurring than it is to reactively regain susceptibility. Nevertheless, the IRAC MoA classification will always provide valuable guidance to the design of effective IRM strategies.

Experience has shown that all effective insecticide or acaricide resistance management strategies seek to minimise the selection for resistance from any one type of insecticide or acaricide. In practice, alternations, sequences or rotations of insecticidal or acaricidal agents from different MoA groups provide a sustainable and effective approach to IRM. This ensures that selection from insecticidal agents in any one MoA group is minimised. The IRAC classification in this document is provided as an aid to insecticide selection for these types of IRM strategies. Applications are often arranged into MoA spray windows or blocks that are defined by the stage of crop development and the biology of the pest(s) of concern. Local expert advice should always be followed with regard to spray windows and timings. Several sprays of an insecticidal agent may be possible within each spray window, but successive generations of a pest should not be treated with insecticidal agents from the same MoA group.

Groups in the classification whose members do not act at a common target site are exempt from the proscription against rotation within the group. These are Group 8, Miscellaneous non-specific (multi-site) inhibitors; Group 13, Uncouplers of oxidative phosphorylation via disruption of the proton gradient; and all of the UN groups: UN, UNB, UNE, UNF, UNM, UNP and UNV.

To help delay resistance, it is strongly recommended that growers also integrate other control methods into insect or mite control programmes. Further advice is given in Appendix 2.

6. Non-target-site resistance mechanisms

It is fully recognized that resistance of insects and mites to insecticides and acaricides can, and frequently does, result from enhanced metabolism by enzymes within the pest. Such metabolic resistance mechanisms are not linked to any specific site of action classification and therefore they may confer resistance to insecticides in more than one IRAC MoA group. Where such metabolic resistance has been characterized and the cross-resistance spectrum is known, it is possible that certain alternations, sequences or rotations of MoA groups cannot be used. Similarly, mechanisms of reduced penetration of the pesticide into the pest, or behavioural changes of the pest may also confer resistance to multiple MoA groups. Where such mechanisms are known to give cross-resistance between MoA groups, the use of insecticides should be modified appropriately.

Where the resistance mechanism(s) is unknown, the intelligent use of alternations, sequences or rotations of insecticidal agents from different MoA classes remains an entirely viable resistance management technique, since such a practice will always minimise selection pressures.

7. The MoA Classification Scheme

The IRAC MOA classification scheme is based on the best available evidence of the MoA of available insecticidal and acaricidal agents. Details of the classification have been agreed upon by IRAC member companies and approved by internationally recognized industrial and academic insect toxicologists and biochemists.

Insecticidal and acaricidal agents are classified into two types of MoA groups: numbered groups whose members are known or thought to act at specific target sites, and UN groups of undefined or unknown mode of action. The only exceptions are the numbered groups 8, Miscellaneous non-specific (multi-site) inhibitors and 13, Uncouplers of oxidative phosphorylation via disruption of the proton gradient, which for historical reasons retain their legacy group numbers even though they are not acting at specific target sites. Nevertheless, it is the intention of the IRAC MoA working group going forward to only assign group numbers where there is good evidence of a common target site.

Insecticidal compounds, bacterial agents, extracts and crude oils, fungal agents, mechanical disruptors, peptides and viruses of unknown Mode of Action are classified in groups UN, UNB, UNE, UNF, UNM, UNP and UNV, respectively.

7.1. Rules for inclusion of an insecticidal agent in the MoA list

- Chemical nomenclature is generally based on ISO accepted common names
- To be included in the active list, insecticidal agents must have, or be very close to having, a minimum of one registered use in at least one country.
- In any one MoA classification sub-group, where more than one active ingredient in that sub-group is registered for use, the sub-group name is used.
- In any one MoA classification sub-group, where only one active ingredient is registered for use, the name of that exemplifying active ingredient may be used

7.2. The Classification Table

IRAC MoA Classification Version 9.4, March 2020 See section 7.4 for further information on sub-groups. See section 7.3 for criteria for descriptors of the quality of MoA information.				
Main Group and Primary Site of Action	Sub-group or exemplifying Active Ingredient	Active Ingredients		
1 Acetylcholinesterase (AChE) inhibitors Nerve action	1A Carbamates	Alanycarb, Aldicarb, Bendiocarb, Benfuracarb, Butocarboxim, Butoxycarboxim, Carbaryl, Carbofuran, Carbosulfan, Ethiofencarb, Fenobucarb, Formetanate, Furathiocarb, Isoprocarb, Methiocarb, Methomyl, Metolcarb, Oxamyl, Pirimicarb, Propoxur, Thiodicarb, Thiofanox, Triazamate,Trimethacarb, XMC, Xylylcarb		
{Strong evidence that action at this protein is responsible for insecticidal effects}	1B Organophosphates	Acephate, Azamethiphos, Azinphos-ethyl, Azinphos- methyl, Cadusafos, Chlorethoxyfos, Chlorfenvinphos, Chlormephos, Chlorpyrifos, Chlorpyrifos-methyl, Coumaphos, Cyanophos, Demeton-S-methyl, Diazinon, Dichlorvos/ DDVP, Dicrotophos, Dimethoate, Dimethylvinphos, Disulfoton, EPN, Ethion, Ethoprophos, Famphur, Fenamiphos, Fenitrothion, Fenthion, Fosthiazate, Heptenophos, Imicyafos, Isofenphos, Isopropyl <i>O</i> - (methoxyaminothio-phosphoryl) salicylate, Isoxathion, Malathion, Mecarbam, Methamidophos, Methidathion, Mevinphos, Monocrotophos, Naled, Omethoate, Oxydemeton-methyl, Parathion, Parathion-methyl, Phenthoate, Phorate, Phosalone, Phosmet, Phosphamidon, Phoxim, Pirimiphos- methyl, Profenofos, Propetamphos, Sulfotep, Tebupirimfos, Temephos, Terbufos, Tetrachlorvinphos, Thiometon, Triazophos, Trichlorfon, Vamidothion		
2 GABA-gated chloride channel blockers	2A Cyclodiene Organochlorines	Chlordane, Endosulfan		
Nerve action {Strong evidence that action at this protein is responsible for insecticidal effects}	2B Phenylpyrazoles (Fiproles)	Ethiprole, Fipronil		

IRAC MoA Classification Version 9.4, March 2020 See section 7.4 for further information on sub-groups. See section 7.3 for criteria for descriptors of the quality of MoA information.						
Main Group and Primary Site of Action	Main Group and Sub-group or Active Ingredients					
3 Sodium channel modulators Nerve action {Strong evidence that action at this protein is responsible for insecticidal effects}	3A Pyrethroids Pyrethrins	Acrinathrin, Allethrin, d- <i>cis-trans</i> Allethrin, d- <i>trans</i> Allethrin, Bifenthrin, Bioallethrin, Bioallethrin S- cyclopentenyl isomer, Bioresmethrin, Cycloprothrin, Cyfluthrin, <i>beta</i> -Cyfluthrin, Cyhalothrin, <i>lambda</i> - Cyhalothrin, <i>gamma</i> -Cyhalothrin, Cypermethrin, <i>alpha</i> -Cypermethrin, <i>beta</i> -Cypermethrin, <i>theta</i> - cypermethrin, <i>zeta</i> -Cypermethrin, Cyphenothrin, (1 <i>R</i>)- <i>trans</i> - isomers], Deltamethrin, Empenthrin (<i>EZ</i>)- (1 <i>R</i>)- isomers], Esfenvalerate, Etofenprox, Fenpropathrin, Fenvalerate, Flucythrinate, Flumethrin, <i>tau</i> -Fluvalinate, Halfenprox, Imiprothrin, Kadethrin, Permethrin, Phenothrin [(1 <i>R</i>)- <i>trans</i> - isomer], Prallethrin, Pyrethrins (pyrethrum), Resmethrin, Silafluofen, Tefluthrin, Tetramethrin, Tetramethrin [(1 <i>R</i>)-isomers], Tralomethrin, Transfluthrin,				
	3B DDT Methoxychlor	DDT Methoxychlor				
4 Nicotinic acetylcholine receptor (nAChR) competitive modulators	4A Neonicotinoids	Acetamiprid, Clothianidin, Dinotefuran, Imidacloprid, Nitenpyram, Thiacloprid, Thiamethoxam,				
Nerve action	4B Nicotine	Nicotine				
{Strong evidence that action at one or more of this class of protein is	4C Sulfoximines	Sulfoxaflor				
responsible for insecticidal effects}	4D Butenolides	Flupyradifurone				
	4E Mesoionics	Triflumezopyrim				
5 Nicotinic acetylcholine receptor (nAChR) allosteric modulators – Site I	Spinosyns	Spinetoram, Spinosad				
Nerve action {Strong evidence that action at one or more of this class of protein is responsible for insecticidal effects}						

IRAC MoA Classification Version 9.4, March 2020 See section 7.4 for further information on sub-groups. See section 7.3 for criteria for descriptors of the quality of MoA information.			
Main Group and Primary Site of Action	Sub-group or exemplifying Active Ingredient	Active Ingredients	
6 Glutamate-gated chloride channel (GluCl) allosteric modulators Nerve and muscle action {Strong evidence that action at one or more of this class of protein is responsible for insecticidal effects}	Avermectins, Milbemycins	Abamectin, Emamectin benzoate, Lepimectin, Milbemectin	
7 Iuvenile hormone nimics	7A Juvenile hormone analogues	Hydroprene, Kinoprene, Methoprene	
Growth regulation Target protein esponsible for biological	7B Fenoxycarb	Fenoxycarb	
activity is unknown, or uncharacterized}	7C Pyriproxyfen	Pyriproxyfen	
* liscellaneous non- pecific (multi-site)	8A Alkyl halides	Methyl bromide and other alkyl halides	
hibitors	8B Chloropicrin	Chloropicrin	
	8C Fluorides	Cryolite (Sodium aluminum fluoride), Sulfuryl fluoride	
	8D Borates	Borax, Boric acid, Disodium octaborate, Sodium borate, Sodium metaborate	
	8E Tartar emetic	Tartar emetic	
	8F Methyl isothiocyanate generators	Dazomet, Metam	
) Chordotonal organ 'RPV channel nodulators	9B Pyridine azomethine derivatives	Pymetrozine, Pyrifluquinazon	
Verve action Strong evidence that action at one or more of his class of proteins is responsible for nsecticidal effects }	9D Pyropenes	Afidopyropen	

IRAC MoA Classification Version 9.4, March 2020 See section 7.4 for further information on sub-groups. See section 7.3 for criteria for descriptors of the quality of MoA information.			
Main Group and Primary Site of Action	Sub-group or exemplifying Active Ingredient	Active Ingredients	
10 Mite growth inhibitors affecting CHS1 Growth regulation	10A Clofentezine Diflovidazin Hexythiazox	Clofentezine, Diflovidazin, Hexythiazox	
{Strong evidence that action at one or more of this class of proteins is responsible for insecticidal effects }	10B Etoxazole	Etoxazole	
11 Microbial disruptors of insect midgut membranes (includes transgenic crops expressing <i>Bacillus</i> <i>thuringiensis</i> toxins, however specific guidance for resistance management of transgenic crops is not based on rotation of modes of action)	11A Bacillus thuringiensis and the insecticidal proteins they produce 11B Bacillus sphaericus	Bacillus thuringiensis subsp. israelensis Bacillus thuringiensis subsp. aizawai Bacillus thuringiensis subsp. kurstaki Bacillus thuringiensis subsp. tenebrionis B.t. crop proteins: (* Please see footnote) Cry1Ab, Cry1Ac, Cry1Fa, Cry1A.105, Cry2Ab, Vip3A, mCry3A, Cry3Ab, Cry3Bb, Cry34Ab1/Cry35Ab1 Bacillus sphaericus	
12 Inhibitors of mitochondrial	12A Diafenthiuron	Diafenthiuron	
ATP synthase	Organotin miticides	Azocyclotin, Cyhexatin, Fenbutatin oxide	
Energy metabolism {Compounds affect the function of this protein,	12C Propargite	Propargite	
but it is not clear that this is what leads to biological activity}	12D Tetradifon	Tetradifon	
13 * Uncouplers of oxidative	Pyrroles	Chlorfenapyr	
phosphorylation via disruption of the proton gradient	Dinitrophenols Sulfluramid	DNOC Sulfluramid	
Energy metabolism			

See s	section 7.4 for further	Version 9.4, March 2020 information on sub-groups.	
See section 7.3 for criteria for descriptors of the quality of MoA information.Main Group and Primary Site of ActionSub-group or exemplifying Active Ingredient			
14 Nicotinic acetylcholine receptor (nAChR) channel blockers Nerve action {Compounds affect the function of this protein, but it is not clear that this is what leads to	Nereistoxin analogues	Bensultap, Cartap hydrochloride, Thiocyclam, Thiosultap-sodium	
biological activity} 15 Inhibitors of chitin biosynthesis affecting CHS1	Benzoylureas	Bistrifluron, Chlorfluazuron, Diflubenzuron, Flucycloxuron, Flufenoxuron, Hexaflumuron, Lufenuron, Novaluron, Noviflumuron, Teflubenzuron, Triflumuron	
Growth regulation {Strong evidence that action at one or more of this class of proteins is responsible for insecticidal effects }			
16 Inhibitors of chitin biosynthesis, type 1 Growth regulation {Target protein responsible for biological activity is unknown, or uncharacterized}	Buprofezin	Buprofezin	
17 Moulting disruptors, Dipteran Growth regulation {Target protein responsible for biological activity is unknown, or uncharacterized}	Cyromazine	Cyromazine	
18 Ecdysone receptor agonists Growth regulation {Strong evidence that action at this protein is responsible for insecticidal effects}	Diacylhydrazines	Chromafenozide, Halofenozide, Methoxyfenozide, Tebufenozide	

Sees	section 7.4 for further	Version 9.4, March 2020 information on sub-groups. otors of the quality of MoA information.	
Main Group and Primary Site of Action	Sub-group or exemplifying Active Ingredient	Active Ingredients	
19 Octopamine receptor agonists Nerve action {Good evidence that action at one or more of this class of protein is responsible for insecticidal effects}	Amitraz	Amitraz	
20 Mitochondrial complex III electron transport inhibitors	20A Hydramethylnon 20B	Hydramethylnon	-
Energy metabolism {Good evidence that	Acequinocyl	Acequinocyl	
action at this protein complex is responsible for insecticidal effects}	20C Fluacrypyrim	Fluacrypyrim	15
	20D Bifenazate	Bifenazate	
21 Mitochondrial complex I electron transport inhibitors	21A METI acaricides and insecticides	Fenazaquin, Fenpyroximate, Pyridaben, Pyrimidifen, Tebufenpyrad, Tolfenpyrad	
Energy metabolism {Good evidence that action at this protein complex is responsible for insecticidal effects}	21B Rotenone	Rotenone (Derris)	
22 Voltage-dependent sodium channel blockers Nerve action	22A Oxadiazines	Indoxacarb	
{Good evidence that action at this protein complex is responsible for insecticidal effects}	22B Semicarbazones	Metaflumizone	

IRAC MoA Classification Version 9.4, March 2020 See section 7.4 for further information on sub-groups. See section 7.3 for criteria for descriptors of the quality of MoA information.		
Main Group and Primary Site of Action	Sub-group or exemplifying Active Ingredient	Active Ingredients
23 Inhibitors of acetyl CoA carboxylase Lipid synthesis, growth regulation {Good evidence that action at this protein is responsible for insecticidal effects}	Tetronic and Tetramic acid derivatives	Spirodiclofen, Spiromesifen, Spiropidion, Spirotetramat
24 Mitochondrial complex IV electron transport inhibitors	24A Phosphides	Aluminium phosphide, Calcium phosphide, Phosphine, Zinc phosphide
Energy metabolism {Good evidence that action at this protein complex is responsible for insecticidal effects}	24B Cyanides	Calcium cyanide, Potassium cyanide, Sodium cyanide
25 Mitochondrial complex Il electron transport inhibitors	25A <i>Beta</i> -ketonitrile derivatives	Cyenopyrafen, Cyflumetofen
Energy metabolism {Good evidence that action at this protein complex is responsible for insecticidal effects}	25B Carboxanilides	Pyflubumide
28 Ryanodine receptor modulators Nerve and muscle action {Strong evidence that action at this protein complex is responsible for insecticidal effects}	Diamides	Chlorantraniliprole, Cyantraniliprole, Cyclaniliprole Flubendiamide, Tetraniliprole

IRAC MoA Classification Version 9.4, March 2020 See section 7.4 for further information on sub-groups. See section 7.3 for criteria for descriptors of the quality of MoA information.			
Main Group and Primary Site of Action	Sub-group or exemplifying Active Ingredient	Active Ingredients	
29 Chordotonal organ Modulators - undefined target site Nerve action (Modulation of chordotonal organ function has been clearly demonstrated, but the specific target protein(s) responsible for biological activity are distinct from Group 9 and remain undefined.)	Flonicamid	Flonicamid	
30 GABA-gated chloride channel allosteric modulators Nerve action {Strong evidence that action at this protein complex is responsible for insecticidal effects}	Meta-diamides Isoxazolines	Broflanilide Fluxametamide	
31 Baculoviruses Host-specific occluded pathogenic viruses (Midgut epithelial columnar cell membrane target site – undefined)	Granuloviruses (GVs) Nucleopolyhedroviruses (NPVs)	Cydia pomonella GV Thaumatotibia leucotreta GV Anticarsia gemmatalis MNPV Helicoverpa armigera NPV	

IRAC MoA Classification Version 9.4, March 2020 See section 7.4 for further information on sub-groups. See section 7.3 for criteria for descriptors of the quality of MoA information.			
Main Group and Primary Site of Action	Sub-group or exemplifying Active Ingredient	Active Ingredients	
32 Nicotinic Acetylcholine Receptor (nAChR) Allosteric Modulators - Site II Nerve action {Strong evidence that action at one or more of this class of protein is responsible for insecticidal effects}	GS-omega/kappa HXTX- Hv1a peptide	GS-omega/kappa HXTX-Hv1a peptide	
UN* Compounds of	Azadirachtin	Azadirachtin	
unknown or uncertain MoA	Benzoximate	Benzoximate	
{Target protein	Bromopropylate	Bromopropylate	
responsible for biological activity is unknown, or	Chinomethionat	Chinomethionat	
uncharacterized}	Dicofol	Dicofol	
	Lime sulfur	Lime sulfur	
	Mancozeb	Mancozeb	
	Pyridalyl	Pyridalyl	
	Sulfur	Sulfur	
UNB* Bacterial agents (non- Bt) of unknown or uncertain MoA		Burkholderia spp Wolbachia pipientis (Zap)	
{Target protein responsible for biological activity is unknown or uncharacterized}			
UNE* Botanical essence including synthetic, extracts and unrefined oils with unknown or uncertain MoA		<i>Chenopodium ambrosioides near ambrosioides</i> extract Fatty acid monoesters with glycerol or propanediol Neem oil	
{Target protein responsible for biological activity is unknown, or uncharacterized}			

IRAC MoA Classification Version 9.4, March 2020 See section 7.4 for further information on sub-groups. See section 7.3 for criteria for descriptors of the quality of MoA information.		
Main Group and Primary Site of Action	Sub-group or exemplifying Active Ingredient	Active Ingredients
UNF* Fungal agents of unknown or uncertain MoA {Target protein responsible for biological activity is unknown, or uncharacterized}		Beauveria bassiana strains Metarhizium anisopliae strain F52 Paecilomyces fumosoroseus Apopka strain 97
UNM* Non-specific mechanical disruptors		Diatomaceous earth
{Target protein responsible for biological activity is unknown, or uncharacterized}		
UNP* Peptides of unknown or uncertain MoA		
{Target protein responsible for biological activity is unknown, or uncharacterized}		
UNV* Viral agents (non- baculovirus) of unknown or uncertain MoA		
{Target protein responsible for biological activity is unknown, or uncharacterized}		
Targeted Physiology: Nerve &	Muscle Growth & Developm	ent 🧰 Respiration 🦲 Midgut 📄 Unknown or Non-Specific

Table Notes:

- a) The color scheme used here associates modes of action into broad categories based on the physiological functions affected, as an aid to understanding symptomology, speed of action and other properties of the insecticides, and not for any resistance management purpose. Rotations for resistance management should be based only on the numbered mode of action groups.
- b) Inclusion of an insecticidal agent in the classification above does not necessarily signify regulatory approval.
- c) MoA assignments will usually involve identification of the target protein responsible for the biological effect, although groupings can be made where insecticidal agents share distinctive physiological effects and are structurally related.
- d) Groups 26 and 27 are unassigned at this time and have therefore been omitted from the table.
- e) An insecticidal agent with an unknown or controversial MoA or an unknown mode of toxicity will be held in group 'UN' or 'UNB', 'UNE', 'UNF', 'UNP', UNV' as applicable until evidence becomes available to enable assignment to a more appropriate MoA class.
- f) Actives in groups marked with an asterisk are thought not to share a common target site and therefore may be freely rotated with each other unless there is reason to expect cross-resistance. These groups are 8, 13, UN, UNB, UNE, UNF, UNM, UNP and UNV.
- g) Different baculoviruses that target different insect orders may be used together without compromising their resistance management. Rotation between certain specific baculoviruses may provide resistance management benefits for some pests. Consult product-specific recommendations.

7.3. Criteria for descriptors of the quality of MoA information

{Strong evidence that action at this protein (or protein complex) is responsible for insecticidal effects}	Potent effects on the function of the target protein <u>and</u> either resistance due to mutation / overexpression / removal of this protein <u>or</u> correlation of potency between effects on the protein and biological activity for a set of related insecticidal agents.
{Good evidence that action at this	Highly potent effects on the function of the protein combined with
protein (or protein complex) is	clearly consistent physiological effects
responsible for insecticidal effects}	
{Insecticidal agents affect the function of this protein, but it is not clear that this is what leads to biological activity}	Insecticidal agents (or their active principles) have moderate or low potency on the function of the protein, and there is little or no evidence associating this effect with biological activity. Insecticidal agents may be grouped because of similarity of structure and distinctive physiological effect.
{Target protein responsible for biological activity is unknown, or uncharacterized}	Insecticidal agents may be grouped because of similarity of structure and distinctive physiological effect.

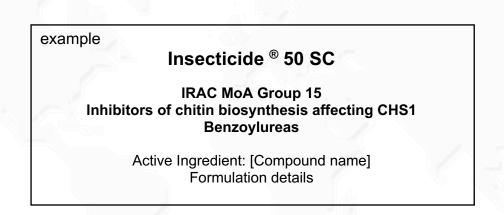
7.4. Notes regarding sub-groups

Sub-groups represent distinct classes of insecticidal agents that are believed to have the same MoA but are different enough in structure or mode of interaction with the target protein that the chance of selection for either metabolic or target-site cross-resistance is reduced compared to closely related insecticidal agents. Sub-groups may also distinguish insecticidal agents that are structurally similar but known to bind differently within the target or to have differential selectivity among multiple targets. Evidence supporting lack of cross-resistance between existing compounds within the Group and the new active ingredient submission must be provided to support sub-grouping. This should include bio-assay based studies and provide quantifiable resistance ratios between susceptible and resistant strains.

The cross-resistance potential between sub-groups is higher than that between different groups, so rotation between sub-groups should be avoided. In exceptional circumstances (i.e. where effective registered insecticides from other mode of action groups are unavailable) rotation may be considered following consultation with local expert advice and where cross-resistance does not exist. These exceptions should not be considered sustainable resistance management strategies, and alternative options should be sought to maintain pest susceptibility.

Sub-groups	Notes
3A & 3B	Because DDT is no longer used in agriculture, this is only applicable for the control of insect vectors of human disease such as mosquitoes.
4A, 4B, 4C, 4D & 4E	Although these compounds are believed to have the same target site, current evidence indicates that the risk of metabolic cross-resistance between subgroups is low.
10A	Hexythiazox is grouped with clofentezine because they exhibit cross-resistance, even though they are structurally distinct. Diflovidazin has been added to this group because it is a close analogue of clofentezine and is expected to have the same mode of action.
11A	Different <i>Bacillus thuringiensis</i> products that target different insect orders may be used together without compromising their resistance management. Rotation between certain specific <i>Bacillus thuringiensis</i> microbial products may provide resistance management benefits for some pests. Consult product-specific recommendations. <u>B.t. Crop Proteins:</u> Where there are differences among the specific receptors within the midguts of target insects, transgenic crops containing certain combinations of the listed proteins provide resistance management benefits.
22A & 22B	Although these compounds are believed to have the same target site, current evidence indicates that the risk of metabolic cross-resistance between subgroups is low.
25A & 25B	Although these compounds are believed to have the same target site, current evidence indicates that the risk of metabolic cross-resistance between subgroups is low.

The following notes provide additional information about particular sub-groups.


7.5. General notes & MoA Classification Scheme Updates

- Further details on the MoA Group Descriptors are given in Appendix 3.
- A list of active ingredients in alphabetical order with their respective MoA classification is given in Appendix 5.
- The Classification Scheme has been prepared using the most up-to-date information available to IRAC. It is provided to user groups, grower organisations, extension personnel, regulatory authorities such as the US EPA and all those involved in resistance management, as an agreed definitive statement by the plant protection industry on the MoA of insecticides currently in use.
- The IRAC MoA classification is reviewed and reissued at intervals as required. The latest version is always available for reference via the IRAC website (<u>www.irac-online.org</u>).
- Submissions for new active ingredients together with recommendations for their inclusion in specific new or existing MoA classes, together with citations or evidence for classification should be made to IRAC through the website.
- IRAC member companies review draft versions before an agreed final version of any update is published. In addition, a number of internationally well-known insect toxicologists and biochemists can be consulted regarding additions, deletions or other changes to the list. Details of the procedures followed for allocation of new insecticidal materials to the MoA classification are given in Appendix 4.
- Changes to the listing may have serious consequences. In those countries where insecticide labels display the IRAC MoA number or class name as an aid to good IRM (see Appendix 1), changes may be especially costly to implement. In general, changes are therefore only endorsed when the scientific evidence supporting the change is compelling.
- Superseded, obsolete or withdrawn insecticidal agents for which no current registration exists, and that are no longer in common usage, are not listed.
- In a continued effort to refine the list, readers are kindly asked to inform IRAC of factual errors or omissions, citing definitive evidence wherever possible. Such submissions should be directed to IRAC via the website. Suggestions for improvements are likewise welcome.

Product labels: Indication of MoA of active ingredient and accompanying IRM advice

To assist users in the selection of insecticides for use in IRM strategies employing sequences, rotations or alternations of MoA groups, IRAC is encouraging producers to clearly indicate the IRAC MoA group number and description on the product label, and to accompany this with appropriate advice of the type indicated below. Thus, in addition to the detailed product information, handling, and safety information required by local regulations, a typical label should clearly indicate the IRAC MoA Group number & description, and minimal, brief advice on IRM as indicated in the example below.

Inclusion of the IRAC group on the label is a warrant from the manufacturer that the insecticide has been classified by IRAC and is listed in Appendix 5 of this document, the only authoritative and comprehensive list of IRAC-classified insecticides. If an insecticide is not listed in Appendix 5 and falls within the scope of the IRAC classification as stated at the beginning of this document, please petition IRAC for classification of the product, as directed in Appendix 4, before drafting a label. Insecticidal materials falling outside the scope of the classification may be labeled as "Exempt from IRAC Classification".

For resistance management purposes, Insecticide 50SC is an IRAC MoA Group 15 insecticide. Any insect population may contain individuals naturally resistant to Insecticide 50SC and other Group 15 insecticides. If these insecticides are used repeatedly, the resistant individuals may eventually dominate the pest insect population. These resistant insects may not be controlled by Insecticide 50SC or by other Group 15 insecticides. To delay the development of resistance:

- Avoid exclusive repeated use of insecticides from the same chemical sub-group, (indicated by the IRAC MoA Group number).
- Alternate with products from other IRAC MoA Groups
- Integrate other control methods (chemical, cultural, biological) into insect control programs.

For further information on resistance management and advice on IRM programmes contact your local distributor.

IRM principles recommended and endorsed by IRAC

- Consult a local agricultural advisor or extension services in the area for up-to-date recommendations and advice on IPM and IRM programmes.
- Consider options for minimizing insecticide use by selecting early-maturing or pest-tolerant varieties of crop plants.
- Include effective cultural and biological control practices that work in harmony with effective IRM programmes. Adopt all non-chemical techniques known to control or suppress pest populations, including biological sprays such as Bt's, resistant varieties, within-field refugia (untreated areas) and crop rotation.
- Where possible select insecticides and other pest management tools that preserve beneficial insects.
- Use products at their full, recommended doses. Reduced (sub-lethal) doses quickly select populations with average levels of tolerance, whilst doses that are too high may impose excessive selection pressures.
- Appropriate, well-maintained equipment should be used to apply insecticides. Recommended water volumes, spray pressures and optimal temperatures should be used to obtain optimal coverage.
- Where larval stages are being controlled, target younger larval instars where possible because these are usually much more susceptible and therefore much more effectively controlled by insecticides than older stages.
- Use appropriate local economic thresholds and spray intervals.
- Follow label recommendations or local expert advice for use of alternations or sequences of different classes of insecticide with differing modes of action as part of an IRM strategy.
- Where there are multiple applications per year or growing season, alternate products of different MoA classes.
- In the event of a control failure, do not reapply the same insecticide but change the class of
 insecticides to one having a different MoA and to which there is no [locally] known crossresistance.
- Mixtures may offer a short-term solution to resistance problems, but it is essential to ensure that each component of a mixture belongs to a different insecticide MoA class, and that each component is used at its full rate.
- Consideration should be given to monitoring for the incidence of resistance in the most commercially important situations and gauge levels of control obtained.
- Withholding use of a product to which resistance has developed until susceptibility returns may be a valid tactic if sufficient alternative chemical classes remain to provide effective control.

MoA Group Descriptors

Nerve and Muscle Targets

Most current insecticides act on nerve and muscle targets. Insecticides that act on these targets are generally fast acting.

Group 1 Acetylcholinesterase (AChE) inhibitors

Inhibit AChE, causing hyperexcitation. AChE is the enzyme that terminates the action of the excitatory neurotransmitter acetylcholine at nerve synapses.

Group 2 GABA-gated chloride channel blockers

Block the GABA-activated chloride channel, causing hyperexcitation and convulsions. GABA is the major inhibitory neurotransmitter in insects.

Group 3 Sodium channel modulators

Keep sodium channels open, causing hyperexcitation and, in some cases, nerve block. Sodium channels are involved in the propagation of action potentials along nerve axons.

Group 4 Nicotinic acetylcholine receptor (nAChR) competitive modulators

Bind to the acetylcholine site on nAChRs, causing a range of symptoms from hyper-excitation to lethargy and paralysis. Acetylcholine is the major excitatory neurotransmitter in the insect central nervous system.

Group 5 Nicotinic acetylcholine receptor (nAChR) allosteric modulators – Site I

Allosterically activate nAChRs (at a site distinct from Group 32 - Site II), causing hyperexcitation of the nervous system. Acetylcholine is the major excitatory neurotransmitter in the insect central nervous system.

Group 6 Glutamate-gated chloride channel (GluCl) allosteric modulators

Allosterically activate glutamate-gated chloride channels (GluCls), causing paralysis. Glutamate is an important inhibitory neurotransmitter in insect.

Group 9 Chordotonal organ TRPV channel modulators

Bind to and disrupt the gating of Nan-Iav TRPV (Transient Receptor Potential Vanilloid) channel complexes in chrodotonal stretch receptor organs, which are critical for the senses of hearing, gravity, balance, acceleration, proprioception and kinesthesia. This disrupts feeding and other behaviors in target insects.

Group 14 Nicotinic acetylcholine receptor (nAChR) channel blockers

Block the nAChR ion channel, resulting in nervous system block and paralysis. Acetylcholine is the major excitatory neurotransmitter in the insect central nervous system.

Group 19 Octopamine receptor agonists

Activate octopamine receptors, leading to hyperexcitation. Octopamine is the insect equivalent of adrenaline, the fight-or-flight neurohormone.

Group 22 Voltage-dependent sodium channel blockers

Block sodium channels, causing nervous system shutdown and paralysis. Sodium channels are involved in the propagation of action potentials along nerve axons.

Group 28 Ryanodine receptor modulators

Activate muscle ryanodine receptors, leading to contraction and paralysis. Ryanodine receptors mediate calcium release into the cytoplasm from intracellular stores.

Group 29 Chordotonal organ modulators – undefined target site

Disrupt the function of chrodotonal stretch receptor organs, which are critical for the senses of hearing, gravity, balance, acceleration, proprioception and kinesthesia. This disrupts feeding and other behaviors in target insects. In contrast to Group 9, Group 29 insecticides do not bind to the Nan-lav TRPV channel complex.

Group 30 GABA-gated chloride channel allosteric modulators

Allosterically inhibit the GABA-activated chloride channel, causing hyperexcitation and convulsions. GABA is the major inhibitory neurotransmitter in insects.

Group 32 Nicotinic acetylcholine receptor (nAChR) allosteric modulators - Site II

Allosterically activate nAChRs (at a site distinct from Group 5 - Site I), causing hyperexcitation of the nervous system. Acetylcholine is the major excitatory neurotransmitter in the insect central nervous system.

Growth and Development Targets

Insect development is controlled by the balance of two principal hormones: juvenile hormone and ecdysone. Insect growth regulators act by mimicking one of these hormones or directly perturbing cuticle formation/deposition or lipid biosynthesis. Insecticides that act on individual targets in this system are generally slow to moderately slow acting.

Group 7 Juvenile hormone mimics Applied in the pre-metamorphic instar, these compounds disrupt and prevent metamorphosis.

Group 10 Mite growth inhibitors affecting CHS1 Inhibit the enzyme that catalyzes the polymerization of Chitin.

Group 15 Inhibitors of chitin biosynthesis affecting CHS1 Inhibit the enzyme that catalyzes the polymerization of Chitin.

Group 16 Inhibitors of chitin biosynthesis, type 1

Incompletely defined MoA leading to inhibition of chitin biosynthesis in a number of insects, including whiteflies.

Group 17 Moulting disruptors, Dipteran

Incompletely defined MoA that leads to moult disruption.

Group 18 Ecdysone receptor agonists

Mimic the moulting hormone, ecdysone, inducing a precocious moult.

Group 23 Inhibitors of acetyl CoA carboxylase

Inhibit acetyl coenzyme A carboxylase, part of the first step in lipid biosynthesis, leading to insect death.

Respiration Targets

Mitochondrial respiration produces ATP, the molecule that energizes all vital cellular processes. In mitochondria, an electron transport chain stores the energy released by oxidation in the form of a proton gradient, which drives ATP synthesis. Several insecticides are known to interfere with mitochondrial respiration by the inhibition of electron transport and/or oxidative phosphorylation. Insecticides that act on individual targets in this system are generally fast to moderately fast acting.

Group 12 Inhibitors of mitochondrial ATP synthase Inhibit the enzyme that synthesizes ATP.

Group 13 Uncouplers of oxidative phosphorylation via disruption of the proton gradient Protonophores that short-circuit the mitochondrial proton gradient so that ATP can not be synthesized.

Group 20 Mitochondrial complex III electron transport inhibitors Inhibit electron transport complex III, preventing the utilization of energy by cells.

Group 21 Mitochondrial complex I electron transport inhibitors Inhibit electron transport complex I, preventing the utilization of energy by cells.

Group 24 Mitochondrial complex IV electron transport inhibitors Inhibit electron transport complex IV, preventing the utilization of energy by cells.

Group 25 Mitochondrial complex II electron transport inhibitors Inhibit electron transport complex II, preventing utilization of energy by cells.

Midgut Targets

Lepidopteran-specific microbial toxins that are sprayed or expressed in transgenic crop varieties, and baculoviruses.

Group 11 Microbial disruptors of insect midgut membranes

Protein toxins that bind to receptors on the midgut membrane and induce pore formation, resulting in ionic imbalance and septicemia.

Group 31 Host-specific occluded pathogenic viruses

A baculovirus-unique Per os Infectivity Factor (PIF) protein complex on the virus promotes host-specific infection by binding to PIF targets on midgut cells that are unknown but believed to be unique for each baculovirus type. Infection is ultimately lethal.

Unknown or non-specific targets

Several insecticides are known to affect less well-described target-sites or functions, or to act non-specifically on multiple targets.

Group 8 Miscellaneous non-specific (multi-site) inhibitors

Group UN Compounds of unknown or uncertain MoA

Group UNB Bacterial agents of unknown or uncertain MoA

Group UNE Botanical essence including synthetic, extracts and unrefined oils with unknown or uncertain MoA

Group UNF Fungal agents of unknown or uncertain MoA

Group UNM Non-specific mechanical disruptors

Group UNP Peptides of unknown or uncertain MoA

Group UNV Viral agents of unknown or uncertain MoA

Procedure for allocation of new insecticidal materials to the MoA classification

IRAC maintains the MoA Classification scheme as the definitive, globally-recognised, ultimate authority on insecticide modes of action. In order to provide the best possible information for resistance management purposes, IRAC also issues regular updates of the scheme, in which newly introduced insecticides are allocated to an appropriate MoA classification group and structural sub-group, and in which re-classification or the correction of errors or anomalies for specific insecticidal agents is undertaken in light of definitive new information. This document details how these processes are administered by IRAC.

Who is responsible for the process within IRAC?

The IRAC MoA Team comprises technical representatives of the member companies with expertise in insect toxicology, pharmacology or biochemistry. All IRAC companies are eligible to contribute technical expertise to the group. The group meets regularly to consider the content and detail of the MoA scheme and makes proposals on significant additions, deletions or reallocations of insecticidal agents within the scheme for consideration by the IRAC Executive.

Why and how often is the scheme updated?

New versions of the scheme are issued periodically as necessary, as a result of the MoA Team's consideration of new information. The introduction of major new MoA groups or the reallocation of insecticidal agents or groups would merit the issue of a new version (vN). Minor changes or corrections that do not significantly impact the scheme are undertaken automatically at intervals as necessary, and sub-versions are issued (vN.n). New sub-versions may be issued up to several times per year as required, while new full versions are not anticipated more than once per year. The potential impact of proposed significant changes on derived versions of the scheme around the world is fully appreciated, especially in countries where MoA labelling of products is used. The MoA team is cognisant of these impacts and revisions are only proposed when the evidence for change is scientifically compelling.

What evidence is needed to support MoA classification of an insecticidal agent?

Proposals for additions to the MoA scheme or for amendments to the current scheme should be submitted to the IRAC MoA team (details below). These proposals will be considered by the Team and a decision on the outcome will be provided to the proposer in due course. Published material in high quality, front line, peer-reviewed, scientific journals is especially useful as a source of information for consideration by the team, and those companies, bodies or individuals submitting proposals for consideration by the team are strongly encouraged to provide such information wherever possible. Corroborating information is also especially welcome. Unpublished material may be submitted in evidence, and the MoA team will interpret this appropriately.

Several types of data can be used to establish MoA (including the activation of pro-insecticides to their actives). Convincing evidence to support the MoA hypothesis is needed. This includes the demonstration of a clear target effect (activation, inhibition, or modulation) at concentrations that can reasonably be expected in the intoxicated organism. Preferably, these data may be corroborated by physiological and/or symptomology studies to link insect mortality to the effect on the target site. A positive structure-activity correlation of *in vitro* efficacy with insecticidal potency, and/or target site mutations conferring resistance are required to further substantiate the proposed MoA.

What are the criteria for establishing MoA Sub-groups?

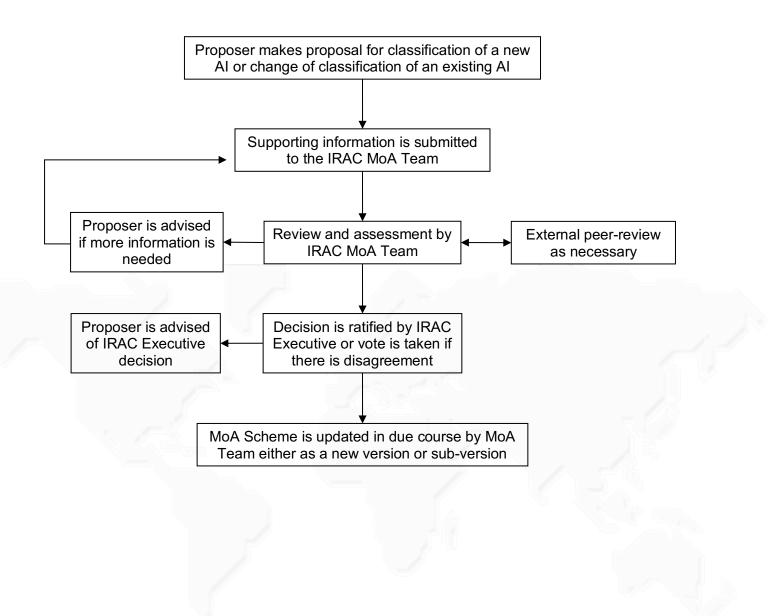
Sub-groups represent distinct chemical classes that are believed to have the same MoA but are different enough in chemical structure or mode of interaction with the target protein that the

chance of selection for either metabolic or target-site cross-resistance is reduced compared to close analogs. Sub-groups may also distinguish insecticidal agents that are structurally similar but known to bind differently within the target or to have differential selectivity among multiple targets. Evidence supporting lack of cross-resistance between existing compounds within the Group and the new active ingredient submission must be provided to support sub-grouping. This should include bio-assay based studies and provide quantifiable resistance ratios between susceptible and resistant strains.

The cross-resistance potential between sub-groups is higher than that between different groups, so rotation between sub-groups should be avoided. In exceptional circumstances (i.e. where effective registered insecticides from other mode of action groups are unavailable) rotation may be considered following consultation with local expert advice and where cross-resistance does not exist. These exceptions should not be considered sustainable resistance management strategies, and alternative options should be sought to maintain pest susceptibility.

How are decisions made by the MoA Team?

Given the definitive nature of the IRAC MoA scheme, the MoA Team regards it as an absolute priority that the highest levels of scientific integrity are always employed in the consideration and discussion of allocation of insecticidal agents. In general, agreement on allocation of an insecticidal agent is usually arrived at through consensus within the Team, following detailed discussion. Major decisions, for example the introduction of new MoA classes or sub-classes are proposed to the IRAC Executive for ratification. In the event that the Team cannot agree it may choose to place the case with a panel of external MoA experts to gain their written opinion before reconsidering the case. The composition of the expert panel is agreed in advance by the Team. If after reconsidering the particular case the team is still in disagreement, the matter will be passed to the IRAC Executive for further consideration. Where individual members of the Team are subject to a conflict of interests through company affiliation or other interests, they may choose to withdraw from discussion of particular insecticidal agents as they consider appropriate.


How long does this process take?

The MoA Team has a duty to make a definitive decision on allocation of an insecticidal agent as quickly as possible following receipt of appropriate supporting evidence. For straightforward cases that do not require external consultation it should generally be expected that the Team could provide feedback to proposers within 3 months. The need for external consultants may extend the process to 6 months.

To whom should proposals be sent?

Proposals for new insecticidal agents or for changes to the current IRAC MoA scheme should be submitted to the IRAC MoA Team via the IRAC International Coordinator. A link to the coordinator is provided on the IRAC website (<u>www.irac-online.org</u>) at the bottom of each page under 'Contact'. Alternatively, the online request can be completed at http://www.irac-online.org/submit-an-active/

Procedure for updates to IRAC MoA Classification Scheme

Active Ingredients (Alphabetical Order) with MOA Classification.

This is the comprehensive reference list of IRAC-classified insecticides. If your active ingredient is not on this list and falls within the scope of this classification as defined in section 1, please contact IRAC as directed in Appendix 4.

Active Ingredient	MOA No.
Abamectin	6
Acephate	1B
Acequinocyl	20B
Acetamiprid	4A
Acrinathrin	3A
Afidopyropen	9D
Alanycarb	1A
Aldicarb	1A
Allethrin	3A
alpha-Cypermethrin	3A
Aluminium phosphide	24A
Amitraz	19
Anticarsia gemmatalis MNPV	31
Azadirachtin	UN
Azamethiphos	1B
Azinphos-ethyl	1B
Azinphos-methyl	1B
Azocyclotin	12B
Bacillus thuringiensis	11A
Bacillus sphaericus	11B
Beauveria bassiana strains	UNF
Bendiocarb	1A
Benfuracarb	1A
Bensultap	14
Benzoximate	UN
beta-Cyfluthrin	3A
beta-Cypermethrin	3A
Bifenazate	20D
Bifenthrin	3A
Bioallethrin	3A
Bioallethrin S-cyclopentenyl isomer	3A
Bioresmethrin	3A
Bistrifluron	15
Borax	8D

Active Ingredient	MOA
Boric acid	No. 8D
Broflanilide	30
Bromopropylate	UN
Buprofezin	16
Burkholderia spp,	UNB
Butocarboxim	1A
Butoxycarboxim	1A 1A
Cadusafos	1B
	24B
Calcium cyanide	
Calcium phosphide	24A
Carbaryl	1A
Carbofuran	1A
Carbosulfan	1A
Cartap hydrochloride	14
Chenopodium ambrosioides near ambrosioides extract	UNE
Chinomethionat	UN
Chlorantraniliprole	28
Chlordane	2A
Chlorethoxyfos	1B
Chlorfenapyr	13
Chlorfenvinphos	1B
Chlorfluazuron	15
Chlormephos	1B
Chloropicrin	8B
Chlorpyrifos	1B
Chlorpyrifos-methyl	1B
Chromafenozide	18
Clofentezine	10A
Clothianidin	4A
Coumaphos	1B
Cryolite	8C
Cyanide	24B
Cyanophos	1B
Cyantraniliprole	28
Cyclaniliprole	28

Active Ingredient	MOA No.
Cycloprothrin	3A
Cydia pomonella GV	31
Cyenopyrafen	25A
Cyflumetofen	25A
Cyfluthrin	3A
Cyhalothrin	3A
Cyhexatin	12B
Cypermethrin	3A
Cyphenothrin (1 <i>R</i>)- <i>trans</i> - isomers]	3A
Cyromazine	17
d-cis-trans Allethrin	3A
Dazomet	8F
DDT	3B
Deltamethrin	3A
Demeton-S-methyl	1B
Diafenthiuron	12A
Diatomaceous earth	UNM
Diazinon	1B
Dichlorvos/ DDVP	1B
Dicofol	UN
Dicrotophos	1B
Diflovidazin	10A
Diflubenzuron	15
Dimethoate	1B
Dimethylvinphos	1B
Dinotefuran	4A
Disodium octaborate	8D
Disulfoton	1B
DNOC	13
d-trans Allethrin	3A
Emamectin benzoate	6
Empenthrin [(EZ)-(1 <i>R</i>)- isomers]	3A
Endosulfan	2A
EPN	1B
Esfenvalerate	ЗA
Ethiofencarb	1A
Ethion	1B
Ethiprole	2B
Ethoprophos	1B

Active Ingredient	MOA No.
Etofenprox	3A
Etoxazole	10B
Famphur	1B
Fatty acid monoesters with glycerol or propanediol	UNE
Fenamiphos	1B
Fenazaquin	21A
Fenbutatin oxide	12B
Fenitrothion	1B
Fenobucarb	1A
Fenoxycarb	7B
Fenpropathrin	3A
Fenpyroximate	21A
Fenthion	1B
Fenvalerate	3A
Fipronil	2B
Flonicamid	29
Fluacrypyrim	20C
Flubendimide	28
Flucycloxuron	15
Flucythrinate	3A
Flufenoxuron	15
Flumethrin	3A
Flupyradifurone	4D
Fluxametamide	30
Formetanate	1A
Fosthiazate	1B
Furathiocarb	1A
gamma-Cyhalothrin	3A
GS-omega/kappa HXTX- Hv1a	32
Halfenprox	3A
Halofenozide	18
Helicoverpa armigera NPV	31
Heptenophos	1B
Hexaflumuron	15
Hexythiazox	10A
Hydramethylnon	20A
Hydroprene	7A
Imicyafos	1B
Imidacloprid	4A

Imiprothrin3AIndoxacarb22AIsofenphos1BIsoprocarb1AIsopropyl O- (methoxyaminothio- phosphoryl) salicylate1BIsoxathion1BKadethrin3AKinoprene7AIambda-Cyhalothrin3ALepimectin6Lime sulfurUNLufenuron15Malathion1BMetaflumizone22BMetam8FMetaflumizone12Strain F52UNFMethocarb1BMethoryl1AMethoryl1AMethoryl1AMethoryl1BMethoryl1AMethoryl1AMethoryl1AMethoryl1AMethoryl1AMethoryl1AMethoryl1AMethoryl1AMethoryl1AMethoryl1AMethoryl1AMethoryl1AMethoryl1AMethorychlor3BMethoxychlor3BMethoxychlor3BMethoryl bromide8AMetolcarb1AMevinphos1BNaled1BNaled1BNeem oilUNENoviflumuron15Noviflumuron15Omethoate1BNethoate1B	Active Ingredient	MOA No.
Isofenphos1BIsoprocarb1AIsopropyl O- (methoxyaminothio- phosphoryl) salicylate1Bphosphoryl) salicylate1BIsoxathion1BKadethrin3AKinoprene7A <i>lambda</i> -Cyhalothrin3ALepimectin6Lime sulfurUNLufenuron15Malathion1BMancozebUNMetaflumizone22BMetam8FMetaflumizone22BMetam1BMethocarb1AMethonyl1AMethonyl1AMethorychlor3BMethoryfenozide1BMilbemectin6Monocrotophos1BNaled1BNaled1BNeem oilUNENoviflumuron15Noviflumuron15Omethoate1B	Imiprothrin	3A
Isoprocarb1AIsopropyl O- (methoxyaminothio- phosphoryl) salicylate1Bphosphoryl) salicylate1BIsoxathion1BKadethrin3AKinoprene7Alambda-Cyhalothrin3ALepimectin6Lime sulfurUNLufenuron15Malathion1BMancozebUNMetaflumizone22BMetam8FMetaflumizone22BMetam1BMetolcarb1AMethidathion1BMethidathion1BMethidathion1BMethoxychlor3BMethoxychlor3BMethoxyfenozide1AMethoxyfenozide1AMetolcarb1AMetolcarb1AMetolcarb1AMetolcarb1AMetolcarb1AMetolcarb1BMilbemectin6Monocrotophos1BNaled1BNaled1BNaled1BNaled1BNovaluron15Noviflumuron15Noviflumuron15Noviflumuron15Noviflumuron15Omethoate1B	Indoxacarb	22A
Isopropyl O- (methoxyaminothio- phosphoryl) salicylate1BIsoxathion1BIsoxathion1BKadethrin3AKinoprene7AIambda-Cyhalothrin3ALepimectin6Lime sulfurUNLufenuron15Malathion1BMancozebUNMetaflumizone22BMetam8FMetarhizium anisopliae strain F52UNFMethidathion1BMethoryl1AMethoryl1AMethorychlor3BMethoxychlor3BMethoxyfenozide18Metolcarb1AMetolcarb1AMetolcarb1AMetolcarb1AMetolcarb1BMilbemectin6Monocrotophos1BNaled1BNaled1BNienpyram4ANovaluron15Noviflumuron15Noviflumuron15	Isofenphos	1B
(methoxyaminothio- phosphoryl) salicylate1BIsoxathion1BKadethrin3AKinoprene7Alambda-Cyhalothrin3ALepimectin6Lime sulfurUNLufenuron15Malathion1BMancozebUNMetaflumizone22BMetam8FMetaflumizone22BMetam1BMethidathion1BMethidathion1BMethoprene7AMethoxychlor3BMethoprene7AMethoprene7AMethoyfenozide18Methoxychlor3BMethoxyfenozide18Metholcarb1AMethoyfenozide18Methoryl Inf1AMethoryl Inf1AMethoryfenozide18Methoryfenozide18Metholcarb1AMetolcarb1AMetolcarb1BMilbemectin6Monocrotophos1BNaled1BNaled1BNicotine4ANovaluron15Noviflumuron15Noviflumuron15Omethoate1B	Isoprocarb	1A
phosphoryl) salicylateIsoxathion1BKadethrin3AKinoprene7Alambda-Cyhalothrin3ALepimectin6Lime sulfurUNLufenuron15Malathion1BMancozebUNMetaflumizone22BMetam8FMetaflumizone22BMetam1BMetaflumizone13Methidathion1BMethidathion1BMethoprene7AMethoprone1AMethoprene7AMethoprene7AMethoxychlor3BMethoxyfenozide18Metholcarb1AMetolcarb1AMethoryl1AMethoxyfenozide18Methollathion18Methoxyfenozide18Methoxyfenozide18Methoxyfenozide18Metholcarb1AMetolcarb1BMilbemectin6Monocrotophos18Naled18Nicotine4BNitenpyram4ANovaluron15Noviflumuron15Omethoate18	Isopropyl O-	
Isoxathion1BKadethrin3AKinoprene7AIambda-Cyhalothrin3ALepimectin6Lime sulfurUNLufenuron15Malathion1BMancozebUNMetaflumizone22BMetam8FMetaflumizone20BStrain F52UNFMethidathion1BMethoprene7AMethopyl1AMethopyl1AMethoyrene7AMethoyrene7AMethoyrene7AMethoyrene1BMethoxychlor3BMethoxychlor3BMetholcarb1AMetolcarb1AMetolcarb1AMetolcarb1AMetolcarb1BMilbemectin6Monocrotophos1BNaled1BNaled1BNicotine4BNitenpyram4ANovaluron15Noviflumuron15Omethoate1B		1B
Kadethrin3AKinoprene7Alambda-Cyhalothrin3ALepimectin6Lime sulfurUNLufenuron15Malathion1BMancozebUNMecarbam1BMetaflumizone22BMetam8FMetarhizium anisopliae strain F52UNFMethiocarb1AMethoprene7AMethonyl1AMethoyrene7AMethoxychlor3BMethoxyfenozide18Metolcarb1AMetolcarb1AMethoxyfenozide18Metolcarb1AMetolcarb1AMethoxyfenozide18Methoxyfenozide18Metolcarb1AMetolcarb1AMetolcarb1AMetolcarb1BMilbemectin6Monocrotophos1BNaled1BNaled1BNaled1BNovaluron15Noviflumuron15Omethoate1B	phosphoryl) salicylate	
Kinoprene7Alambda-Cyhalothrin3ALepimectin6Lime sulfurUNLufenuron15Malathion1BMancozebUNMecarbam1BMetaflumizone22BMetam8FMetarhizium anisopliae strain F52UNFMethidathion1BMethonyl1AMethoryl1AMethoryl1AMethoxyfenozide18Methoxyfenozide18Methoxyfenozide18Metolcarb1AMethoxyfenozide18Metolcarb1AMethoxyfenozide18Methoxyfenozide18Methoxyfenozide18Metolcarb1AMetolcarb1AMetolcarb1AMetolcarb1AMetolcarb1AMetolcarb1AMetolcarb1AMetolcarb1AMetolcarb1AMonocrotophos1BNaled1BNaled1BNaled1BNicotine4BNitenpyram4ANovaluron15Noviflumuron15Omethoate1B	Isoxathion	1B
lambda-Cyhalothrin3ALepimectin6Lime sulfurUNLufenuron15Malathion18MancozebUNMecarbam18Metaflumizone22BMetam8FMetarhizium anisopliae strain F52UNFMethidathion18Methiocarb1AMethoprene7AMethoxychlor3BMethoxychlor3BMetholcarb1AMethoxyfenozide18Metholos18Methoxyfenozide18Metholcarb1AMethoxyfenozide18Metholocarb18Methoxyfenozide18Metholocarb18Methoxyfenozide18Metolcarb18Metolcarb18Nibemectin6Monocrotophos18Naled18Naled18Nicotine48Nicotine15Noviflumuron15Omethoate18	Kadethrin	3A
Lepimectin6Lime sulfurUNLufenuron15Malathion18MancozebUNMecarbam18Metaflumizone228Metam8FMetarhizium anisopliae strain F52UNFMethamidophos18Methiocarb1AMethoprene7AMethoyfenozide18Methoxyfenozide18Metholcarb1AMethoxyfenozide18Metholcarb1AMethoxyfenozide18Metholl18Metholl18Methoxyfenozide18Metholl18Metholl18Metholl18Metholl18Metholl18Metholl18Metholl18Metholl18Metholl18Nevinphos18Naled18Naled18Nicotine48Novaluron15Noviflumuron15Omethoate18	Kinoprene	7A
Lime sulfurUNLufenuron15Malathion18MancozebUNMecarbam18Metaflumizone228Metam8FMetarhizium anisopliae strain F52UNFMethamidophos18Methiocarb1AMethonyl1AMethoyrene7AMethoyrene7AMethoxyfenozide18Metolcarb1AMethoxyfenozide18Metolcarb1AMetolcarb1AMetolcarb1AMetolcarb1AMetolcarb1BMethoxyfenozide18Metolcarb1AMetolcarb1AMetolcarb1AMonocrotophos1BNaled1BNaled1BNicotine4BNitenpyram4ANovaluron15Omethoate1B	lambda-Cyhalothrin	3A
Lufenuron15Malathion1BMancozebUNMecarbam1BMetaflumizone22BMetam8FMetarhizium anisopliae strain F52UNFMethamidophos1BMethiocarb1AMethoprene7AMethoychlor3BMethoxychlor3BMetolcarb1AMethoxyfenozide18Metolcarb1AMethoxyfenozide18Metolcarb1AMetolcarb1AMetolcarb1BMethoxyfenozide1BMilbemectin6Monocrotophos1BNaled1BNicotine4BNitenpyram4ANovaluron15Omethoate1B	Lepimectin	6
Malathion1BMancozebUNMecarbam1BMetaflumizone22BMetam8FMetarhizium anisopliae strain F52UNFMethamidophos1BMethidathion1BMethiocarb1AMethoprene7AMethoychlor3BMethoxychlor3BMetholcarb1AMethocychlor3BMethoryfenozide1AMetolcarb1AMetolcarb1AMetolcarb1BMilbemectin6Monocrotophos1BNaled1BNienpyram4ANovaluron15Noviflumuron15Omethoate1B	Lime sulfur	UN
MancozebUNMecarbam1BMetaflumizone22BMetam8FMetarhizium anisopliae strain F52UNFMethamidophos1BMethidathion1BMethiocarb1AMethoprene7AMethoychlor3BMethoxyfenozide18Metolcarb1AMetolcarb18Methoxyfenozide18Metolcarb1AMetolcarb1AMetolcarb1AMetolcarb1BMilbemectin6Monocrotophos1BNaled1BNicotine4BNitenpyram4ANovaluron15Noviflumuron15Omethoate1B	Lufenuron	15
Mecarbam1BMetaflumizone22BMetam8FMetarhizium anisopliae strain F52UNFMethamidophos1BMethidathion1BMethiocarb1AMethomyl1AMethoyrene7AMethoxychlor3BMethoxyfenozide18Metolcarb1AMethoxyfenozide18Metolcarb1AMetolcarb1AMetolcarb1AMetolcarb1BMetolcarb1BMetolcarb1BMetolcarb1BMilbemectin6Monocrotophos1BNaled1BNicotine4BNitenpyram4ANovaluron15Noviflumuron15Omethoate1B	Malathion	1B
Metaflumizone22BMetam8FMetarhizium anisopliae strain F52UNFMethamidophos1BMethidathion1BMethiocarb1AMethomyl1AMethoyrene7AMethoxychlor3BMethoxyfenozide18Metolcarb1AMetolcarb18Metolcarb18Metolcarb18Metolcarb18Metolcarb18Metolcarb18Metolcarb18Milbemectin6Monocrotophos1BNaled1BNicotine4BNitenpyram4ANovaluron15Noviflumuron15Omethoate1B	Mancozeb	UN
Metam8FMetarhizium anisopliae strain F52UNFMethamidophos1BMethidathion1BMethidathion1AMethiocarb1AMethomyl1AMethoprene7AMethoxychlor3BMethoxyfenozide18Metholcarb1AMethoxyfenozide18Metholcarb1AMethoxyfenozide18Metholcarb1AMetolcarb1BMilbemectin6Monocrotophos1BNaled1BNicotine4BNitenpyram4ANovaluron15Noviflumuron15Omethoate1B	Mecarbam	1B
Metarhizium anisopliae strain F52UNFMethamidophos1BMethidathion1BMethidathion1AMethiocarb1AMethomyl1AMethoprene7AMethoxychlor3BMethoxyfenozide18Metholcarb1AMethoxyfenozide18Metholcarb1AMethoxyfenozide18Metholcarb1AMetholcarb1BMetolcarb1BMilbemectin6Monocrotophos1BNaled1BNicotine4BNitenpyram4ANovaluron15Noviflumuron15Omethoate1B	Metaflumizone	22B
strain F52UNFMethamidophos1BMethidathion1BMethiocarb1AMethomyl1AMethoprene7AMethoxychlor3BMethoxyfenozide18Metholcarb1AMethoxyfenozide18Metholcarb1AMethoxyfenozide18Metholcarb1AMethoxyfenozide18Metholcarb1BMilbemectin6Monocrotophos1BNaled1BNicotine4BNitenpyram4ANovaluron15Noviflumuron15Omethoate1B	Metam	8F
Methidathion1BMethiocarb1AMethomyl1AMethomyl1AMethoprene7AMethoxychlor3BMethoxyfenozide18Methotyfenozide8AMethyl bromide8AMetolcarb1AMevinphos1BMilbemectin6Monocrotophos1BNaled1BNeem oilUNENicotine4BNitenpyram4ANovaluron15Omethoate1B	· ·	UNF
Methiocarb1AMethomyl1AMethoprene7AMethoxychlor3BMethoxyfenozide18Methyl bromide8AMetolcarb1AMevinphos1BMilbemectin6Monocrotophos1BNaled1BNicotine4BNitenpyram4ANovaluron15Noviflumuron15Omethoate1B	Methamidophos	1B
Methomyl1AMethoprene7AMethoxychlor3BMethoxyfenozide18Methyl bromide8AMetolcarb1AMevinphos1BMilbemectin6Monocrotophos1BNaled1BNeem oilUNENicotine4BNitenpyram4ANovaluron15Omethoate1B	Methidathion	1B
Methoprene7AMethoxychlor3BMethoxyfenozide18Methyl bromide8AMetolcarb1AMevinphos1BMilbemectin6Monocrotophos1BNaled1BNeem oilUNENicotine4BNitenpyram4ANovaluron15Noviflumuron15Omethoate1B	Methiocarb	1A
Methoxychlor3BMethoxyfenozide18Methyl bromide8AMetolcarb1AMevinphos1BMilbemectin6Monocrotophos1BNaled1BNeem oilUNENicotine4BNitenpyram4ANovaluron15Noviflumuron15Omethoate1B	Methomyl	1A
Methoxychlor3BMethoxyfenozide18Methyl bromide8AMetolcarb1AMevinphos1BMilbemectin6Monocrotophos1BNaled1BNeem oilUNENicotine4BNitenpyram4ANovaluron15Noviflumuron15Omethoate1B	Methoprene	7A
Methoxyfenozide18Methyl bromide8AMetolcarb1AMevinphos1BMilbemectin6Monocrotophos1BNaled1BNeem oilUNENicotine4BNitenpyram4ANovaluron15Noviflumuron1BOmethoate1B	·	3B
Methyl bromide8AMetolcarb1AMevinphos1BMilbemectin6Monocrotophos1BNaled1BNeem oilUNENicotine4BNitenpyram4ANovaluron15Noviflumuron15Omethoate1B		18
Metolcarb1AMevinphos1BMilbemectin6Monocrotophos1BNaled1BNeem oilUNENicotine4BNitenpyram4ANovaluron15Noviflumuron15Omethoate1B		8A
Milbemectin6Monocrotophos1BNaled1BNeem oilUNENicotine4BNitenpyram4ANovaluron15Noviflumuron15Omethoate1B	· · · · · · · · · · · · · · · · · · ·	1A
Milbemectin6Monocrotophos1BNaled1BNeem oilUNENicotine4BNitenpyram4ANovaluron15Noviflumuron15Omethoate1B	Mevinphos	1B
Monocrotophos1BNaled1BNeem oilUNENicotine4BNitenpyram4ANovaluron15Noviflumuron15Omethoate1B		6
Naled1BNeem oilUNENicotine4BNitenpyram4ANovaluron15Noviflumuron15Omethoate1B		-
Neem oilUNENicotine4BNitenpyram4ANovaluron15Noviflumuron15Omethoate1B		1B
Nicotine4BNitenpyram4ANovaluron15Noviflumuron15Omethoate1B		
Nitenpyram4ANovaluron15Noviflumuron15Omethoate1B		
Novaluron15Noviflumuron15Omethoate1B		
Noviflumuron15Omethoate1B		
Omethoate 1B		
		-
	Oxamyl	1A

Active Ingredient	MOA No.
Oxydemeton-methyl	1B
<i>Paecilomyces fumosoroseus</i> Apopka strain 97	UNF
Parathion	1B
Parathion-methyl	1B
Permethrin	ЗA
Phenothrin [(1 <i>R</i>)- <i>trans</i> - isomer]	3A
Phenthoate	1B
Phorate	1B 1B
Phosalone	1B 1B
Phosmet	1B 1B
Phosphamidon	1B 1B
Phosphine	24A
Phoxim	1B
Pirimicarb	1B 1A
Pirimiphos- methyl	1B
Potassium cyanide	24B
Prallethrin	3A
Profenofos	1B
Propargite	12C
Propetamphos	1B
Propoxur	1A
Prothiofos	1B
Pyflubumide	25B
Pymetrozine	9B
Pyraclofos	1B
Pyrethrins (pyrethrum)	3A
Pyridaben	21A
Pyridalyl	UN
Pyridaphenthion	1B
Pyrifluquinazon	9B
Pyrimidifen	21A
Pyriproxyfen	7C
Quinalphos	1B
Resmethrin	3A
Rotenone (Derris)	21B
Silafluofen	3A
Sodium borate	8D
Sodium cyanide	24B
Sodium metaborate	8D

Terbufos

Tetradifon

Tetramethrin

Tetraniliprole

Tetrachlorvinphos

Tetramethrin [(1R)- isomers]

Active Ingredient	MOA No.	
Spinetoram	5	
Spinosad	5	
Spirodiclofen	23	
Spiromesifen	23	
Spriropidion	23	
Spirotetramat	23	
Sulfotep	1B	
Sulfoxaflor	4C	
Sulfur	UN	
Sulfuramid	13	
Sulfuryl fluoride	8C	
Tartar emetic	8E	
tau-Fluvalinate	3A	
Tebufenozide	18	
Tebufenpyrad	21A	
Tebupirimfos	1B	
Teflubenzuron	15	
Tefluthrin	3A	
Temephos	1B	

1B

1B

12D

3A

3A

28

Active Ingredient	MOA No.
Thaumatotibia leucotreta GV	31
theta-cypermethrin	3A
Thiacloprid	4A
Thiamethoxam	4A
Thiocyclam	14
Thiodicarb	1A
Thiofanox	1A
Thiometon	1B
Thiosultap-sodium	14
Tolfenpyrad	21A
Tralomethrin	3A
Transfluthrin	3A
Triazamate	1A
Triazophos	1B
Trichlorfon	1B
Triflumezopyrim	4E
Triflumuron	15
Trimethacarb	1A
Vamidothion	1B
Wolbachia pipientis (Zap)	UNB
XMC	1A
Xylylcarb	1A
zeta-Cypermethrin	3A
Zinc phosphide	24A

Version: 9.4

Appendix 6 Active Ingredients Pending Registration

Main Group and Primary Site of Action	Chemical Sub-group or exemplifying Active Ingredient	Active Ingredient
4 Nicotinic acetylcholine receptor (nAChR) competitive modulators	4E Mesoionics	Dicloromezotiaz
Nerve action		
{Strong evidence that action at one or more of this class of protein is responsible for insecticidal effects}		